
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 2: Axiom Users Guide

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
S.J. Atkins Henry Baker Martin Baker
Stephen Balzac Yurij Baransky David R. Barton
Thomas Baruchel Gerald Baumgartner Gilbert Baumslag
Michael Becker Nelson H. F. Beebe Jay Belanger
David Bindel Fred Blair Vladimir Bondarenko
Mark Botch Raoul Bourquin Alexandre Bouyer
Karen Braman Peter A. Broadbery Martin Brock
Manuel Bronstein Stephen Buchwald Florian Bundschuh
Luanne Burns William Burge Ralph Byers
Quentin Carpent Robert Caviness Bruce Char
Ondrej Certik Tzu-Yi Chen Cheekai Chin
David V. Chudnovsky Gregory V. Chudnovsky Mark Clements
James Cloos Jia Zhao Cong Josh Cohen
Christophe Conil Don Coppersmith George Corliss
Robert Corless Gary Cornell Meino Cramer
Jeremy Du Croz David Cyganski Nathaniel Daly
Timothy Daly Sr. Timothy Daly Jr. James H. Davenport
David Day James Demmel Didier Deshommes
Michael Dewar Jack Dongarra Jean Della Dora
Gabriel Dos Reis Claire DiCrescendo Sam Dooley
Lionel Ducos Iain Duff Lee Duhem
Martin Dunstan Brian Dupee Dominique Duval
Robert Edwards Heow Eide-Goodman Lars Erickson
Richard Fateman Bertfried Fauser Stuart Feldman
John Fletcher Brian Ford Albrecht Fortenbacher
George Frances Constantine Frangos Timothy Freeman
Korrinn Fu Marc Gaetano Rudiger Gebauer
Van de Geijn Kathy Gerber Patricia Gianni
Gustavo Goertkin Samantha Goldrich Holger Gollan
Teresa Gomez-Diaz Laureano Gonzalez-Vega Stephen Gortler
Johannes Grabmeier Matt Grayson Klaus Ebbe Grue
James Griesmer Vladimir Grinberg Oswald Gschnitzer
Ming Gu Jocelyn Guidry Gaetan Hache
Steve Hague Satoshi Hamaguchi Sven Hammarling
Mike Hansen Richard Hanson Richard Harke
Bill Hart Vilya Harvey Martin Hassner
Arthur S. Hathaway Dan Hatton Waldek Hebisch
Karl Hegbloom Ralf Hemmecke Henderson
Antoine Hersen Roger House Gernot Hueber
Pietro Iglio Alejandro Jakubi Richard Jenks
William Kahan Kyriakos Kalorkoti Kai Kaminski

iii

Grant Keady Wilfrid Kendall Tony Kennedy
Ted Kosan Paul Kosinski Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson George L. Legendre Franz Lehner
Frederic Lehobey Michel Levaud Howard Levy
Ren-Cang Li Rudiger Loos Michael Lucks
Richard Luczak Camm Maguire Francois Maltey
Alasdair McAndrew Bob McElrath Michael McGettrick
Edi Meier Ian Meikle David Mentre
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O’Connor Summat Oemrawsingh
Kostas Oikonomou Humberto Ortiz-Zuazaga Julian A. Padget
Bill Page David Parnas Susan Pelzel
Michel Petitot Didier Pinchon Ayal Pinkus
Frederick H. Pitts Jose Alfredo Portes Gregorio Quintana-Orti
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Albert D. Rich Michael Richardson
Guilherme Reis Huan Ren Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sima Nick Simicich William Sit
Elena Smirnova Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Robert Sutor Moss E. Sweedler
Eugene Surowitz Max Tegmark T. Doug Telford
James Thatcher Balbir Thomas Mike Thomas
Dylan Thurston Steve Toleque Barry Trager
Themos T. Tsikas Gregory Vanuxem Bernhard Wall
Stephen Watt Jaap Weel Juergen Weiss
M. Weller Mark Wegman James Wen
Thorsten Werther Michael Wester R. Clint Whaley
James T. Wheeler John M. Wiley Berhard Will
Clifton J. Williamson Stephen Wilson Shmuel Winograd
Robert Wisbauer Sandra Wityak Waldemar Wiwianka
Knut Wolf Yanyang Xiao Liu Xiaojun
Clifford Yapp David Yun Vadim Zhytnikov
Richard Zippel Evelyn Zoernack Bruno Zuercher
Dan Zwillinger

iv

Contents

1 Axiom and Category Theory 1
1.1 Covariance and Contravariance . 1
1.2 Axiom Type Lattice . 2
1.3 Terms to Understand . 2
1.4 Category Definition . 3
1.5 Monoids and Groups . 4

2 Axiom Implementation Details 5
2.1 Makefile . 5

3 Writing Spad Code 7
3.1 The Description: label and the)describe command 7

4 Bibliography 11

5 Index 15

v

vi CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

Chapter 1

Axiom and Category Theory

1.1 Covariance and Contravariance

Axiom has an order relation between types. The types can be in one of five possible rela-
tionships.

A type can be more general than another type. For example, Integer is more general than
PositiveInteger.

A type can be more specific than another type. Conversely PositiveInteger is more specific
than Integer.

A type can be equal to another type.

A type can be converted or coerced to another type. For example, Fraction(Polynomial(Integer))
can be coerced to Polynomial(Fraction(Integer)).

A type can be unrelated to another type. String and Expression are not related.

Covariance is converting from a wider type to a narrower type. For instance, converting
from Matrix(Float) to Matrix(Integer).

Contravariance is converting from a narrower type to a wider type. For instance, converting
from Matrix(Integer) to Matrix(Float).

Invariance means that one type cannot convert to another. For instance, a Matrix(Float)
which contains numbers which cannot be represented as Integers cannot be converted to a
Matrix(Integer).

These facts form an order relation, which by definition is reflexive, transitive and antisym-
metric.

Reflexive means that Integer = Integer.

Transitive means that PositiveInteger < Integer < Float implies that PositiveInteger < Float.

Antisymmetric means that PositiveInteger < Float implies not(Float < PositiveInteger).

1

2 CHAPTER 1. AXIOM AND CATEGORY THEORY

1.2 Axiom Type Lattice

The types in Axiom form a lattice based on the order relationship. It is a lattice because
Axiom supports multiple inheritance.

References of interest include:

Michael Barr and Charles Wells “Category Theory for Computing Science” 1998
www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf

Saunders Mac Lane “Catogories for the Working Mathematician”
Springer-Verlag 2010 ISBN 978-1-4419-3123-8

Steve Awodey “Category Theory”
ftp://sumin.in.ua/Books/DVD-021/Awodey_S._Category_Theory(en)(305s).pdf

“Introduction to Category Theory”
www.youtube.com/watch?v=eu0rj5C2Otg

Luca Cardelli and Peter Wegner “On understanding types, data abstraction and polymor-
phism” Computing Surveys, Vol 17 no 4 pp471-522 Dec. 1985
lucacardelli.name/Papers/OnUnderstanding.A4.pdf

A. J. H. Simons, “Adding Axioms to Cardelli-Wegner Subtyping” 1994
staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/addaxiom.pdf

Dana Scott “Data Types as Lattices”
www.cs.ox.ac.uk/files/3287/PRG05.pdf

Roland Backhouse and Marcel Bijsterveld “Category Theory as Coherently Constructive
Lattice Theory” November 1994

1.3 Terms to Understand

Suppose we wish to join Complex with Polynomial(Integer). What would elements of this
combination look like?

The union of the two is a co-product of topological spaces.

The simple combination is not simply adding elements since

i+ x2

is not a valid combination.

We need the algebraic co-product, known as the tensor product. We end up with a domain
of Complex(Polynomial(Integer)).

-> a:Complex(POLY(INT)):=%i+3*x

3x + %i

Type: Complex(Polynomial(Integer))

-> a::POLY(COMPLEX(INT))

1.4. CATEGORY DEFINITION 3

3x + %i

Type: Polynomial(Complex(Integer))

1.4 Category Definition

A category has four parts. We need a set of objects, usually represented as dots. We need
a set of arrows (maps, morphisms), from dot to dot. We need a way to compose arrows in
an associative manner. We need an identity arrow from a dot to itself.

The set of all arrows from dot A to dot B is written as Homc(A,B) or, sometimes C(A,B).
Notice that the set C(A,B) is disjoint from C(A,D) since each arrow has a unique domain
and co-domain.

For the example of the category Set, the objects are sets and the arrows are functions between
sets. For the category Ring, the objects are rings and the arrows are ring homomorphisms.
Similarly for the category Group, the dots are groups and the arrows are group homomor-
phisms. For a fixed Ring R, the category R-Mod has dots which are left R-modules and the
arrows are R-module homomorphisms. We can also look at the category Mod-R which has
dots of right R-modules and arrows which are R-module homomorphisms. For the category
K, if K is a field, the dots are K-vector spaces and the arrows are K-linear transformations.

In Axiom the dots are Types (such as Integer or Character) and the arrows are functions
between them with signature:

f : Integer -> Character

Relations between categories is called a functor. A functor F takes things in category C
into things in category D. We need a function on objects which maps objects of C to objects
of D. We need a function on arrows which take arrows of C to arrows of D.

The categories C and D well defined structure. They have a domain and co-domain of
arrows. They have identity arrows. There is a rule of composition of arrows. These form
commutative diagrams.

First we have to make sure the functor F maintains the domain and co-domain structure
of C. When we apply functor F to C we need to preserve all of the structure so F has to
be defined on all of these properties. If we look at two dots in category C and a function f
which is an arrow in C

f

A ----> B

then the functor F has to operate on everything so we get:

Ff

FA ----> FB

This means that if dom is the domain function in C then the functor F commutes with dom.
That is, applying F (dom(f)) = dom(F (f)).

4 CHAPTER 1. AXIOM AND CATEGORY THEORY

Next we have to make sure the functor F maintains the identity arrow of C. From the above
we know that F (identity(x)) = identity(F (x)).

Finally we have to make sure that the rule for composition of arrows in C is preserved. So the
functor F has to make sure that what composes in C also composes with the same diagram
in D.

Some standard functors are the identity functor 1c which just maps C to C. We can form a
functor which forgets properties so that the category Group could map to its underlying set.
We can lift a category by forgetting properties, for example, lifting the category of Abelian
Group C to Group D by “forgetting” the commutative property of C. Similarly the category
Ring or the category Module can be mapped to the underlying Abelian Group. There is
also the Constant functor which maps all of the dots in C to a single dot in D and all of the
arrows in C to the identity arrow in D.

The category CommutativeRing R can be mapped to a Group with the functor GLn which
is the group of invertible NxN matrices with entries in the CommutativeRing R.

1.5 Monoids and Groups

Given a single element set and a set of arrows from that element to itself we know from the
associative property that (fg)h = f(gh) and from the identity property that ef = f = fe.

A 1-object category is a monoid. A 1-object category where all of the arrows are invertible
is a group.

If we restrict the category so there is at most one arrow between any two objects in the set
then we have an ordered set.

A functor F from category C to category D consists of

• object function takes objects of C to objects of D

• arrow function takes arrows of C to arrows of D

Structurally we have 3 things to preserve.

• domains and co-domains of arrows. In order to preserve structure the functor F has to
commute with the domain and co-domain functions. That is, F (dom(f)) = dom(F (f))
and F (co− dom(f)) = co− dom(F (f)).

• identity arrows. The functor F must preserve identity so F (id(x)) = id(F (x)).

• composition properties of arrows. The functor F must take commuting diagrams to
commuting diagrams.

Chapter 2

Axiom Implementation Details

2.1 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In
particular, the Makefile for this book is part of the source of the book and is included below.

5

6 CHAPTER 2. AXIOM IMPLEMENTATION DETAILS

Chapter 3

Writing Spad Code

3.1 The Description: label and the)describe command

The describe command will print out the comments associated with Axiom source code ele-
ments. For the category, domain, and package sections the text is taken from the Description:
keyword.

This information is stored in a database and can be queried with

)lisp (getdatabase ’|Integer| ’documentation)

for the Integer domain. However, this information has other uses in the system so it contains
tags and control information. Most tags are removed by the describe function since the
output is intended to be displayed in ASCII on the terminal.

The Description: keyword is in the comment block just after the abbreviation command. It
is freeform and the paragraph will be reflowed automatically to allow for about 60 characters
per line, adjusted for spaces. The Description: section should be written after the keyword
in the “++” comments as in:

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This package does some interesting stuff. We can write multiple

++ lines but they should all line up with the first character of

++ the Description keyword. Special \spad{terms} will be removed.

++

++ The above line will force a newline. So will ending a line with \br

++ \tab{5}This will allow primitive formatting\br

++ \tab{5}So you can align text\br

++ \tab{10}Start in column 11\tab{5}and skip 5 spaces\br

++ \tab{10}End in column 11\tab{7}and count out the needed spaces\br

++ \tab{5} note that the last line will not need the br command

7

8 CHAPTER 3. WRITING SPAD CODE

As the comment says, the Description should all be aligned under the “D” in Description.
You can indent using \tab{n} which will insert n spaces. You can force a newline in two
ways. Either include a blank line (with the “++” comments) or use the \br keyword.

Due to lousy parsing algorithms for comments there are various ways this can all go wrong.

There should not be any macros between the Description: section and the beginning of the
definition. This is wrong. It will cause the

)describe package d03AgentsPackage

to give the wrong output because it does not find the end of the description section properly.

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This description does not work

LEDF ==> List Expression DoubleFloat

d03AgentsPackage(): E == I where

In the Description: section the \tab{nn} function will be transformed into nn spaces. If you
end each line with a \br you can control alignment.

++ Description:

++ This is an example of a table alignment\br

++ \tab{5}First Item\tab{5} This will line up with the following line\br

++ \tab{5}Second Item\tab{4} This will line up with the following line\br

++ \tab{5}Third Item\tab{5} This will line up with the following line

If the main body of the category, domain, or package begins with properties rather than
functions the Description will be incorrectly recorded. This is a known bug finding the end
of the Description section. For instance, this

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

NullSquare

++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

will give the output

3.1. THE DESCRIPTION: LABEL AND THE)DESCRIBE COMMAND 9

{JacobiIdentity} means that} [x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0 holds.

but reordering it to read:

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

NullSquare

++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

will give the output

The category of Lie Algebras. It is used by the domains of

non-commutative algebra, LiePolynomial and XPBWPolynomial.

which is correct.

— * —

PROJECT=bookvol2

TANGLE=/usr/local/bin/NOTANGLE

WEAVE=/usr/local/bin/NOWEAVE

LATEX=/usr/bin/latex

MAKEINDEX=/usr/bin/makeindex

all:

${WEAVE} -t8 -delay ${PROJECT}.pamphlet >${PROJECT}.tex

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

${MAKEINDEX} ${PROJECT}.idx

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

———-

10 CHAPTER 3. WRITING SPAD CODE

Chapter 4

Bibliography

11

12 CHAPTER 4. BIBLIOGRAPHY

Bibliography

[Knut92] Donald E. Knuth. Literate Programming. Center for the Study of Language and
Information, Stanford CA, 1992.

13

14 BIBLIOGRAPHY

Chapter 5

Index

15

	Axiom and Category Theory
	Covariance and Contravariance
	Axiom Type Lattice
	Terms to Understand
	Category Definition
	Monoids and Groups

	Axiom Implementation Details
	Makefile

	Writing Spad Code
	The Description: label and the)describe command

	Bibliography
	Index

