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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Axiom and Category Theory

1.1 Covariance and Contravariance

Axiom has an order relation between types. The types can be in one of five possible rela-
tionships.

A type can be more general than another type. For example, Integer is more general than
PositiveInteger.

A type can be more specific than another type. Conversely PositiveInteger is more specific
than Integer.

A type can be equal to another type.

A type can be converted or coerced to another type. For example, Fraction(Polynomial(Integer))
can be coerced to Polynomial(Fraction(Integer)).

A type can be unrelated to another type. String and Expression are not related.

Covariance is converting from a wider type to a narrower type. For instance, converting
from Matrix(Float) to Matrix(Integer).

Contravariance is converting from a narrower type to a wider type. For instance, converting
from Matrix(Integer) to Matrix(Float).

Invariance means that one type cannot convert to another. For instance, a Matrix(Float)
which contains numbers which cannot be represented as Integers cannot be converted to a
Matrix(Integer).

These facts form an order relation, which by definition is reflexive, transitive and antisym-
metric.

Reflexive means that Integer = Integer.

Transitive means that PositiveInteger < Integer < Float implies that PositiveInteger < Float.

Antisymmetric means that PositiveInteger < Float implies not(Float < PositiveInteger).

1



2 CHAPTER 1. AXIOM AND CATEGORY THEORY

1.2 Axiom Type Lattice

The types in Axiom form a lattice based on the order relationship. It is a lattice because
Axiom supports multiple inheritance.

References of interest include:

Michael Barr and Charles Wells “Category Theory for Computing Science” 1998
www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf

Saunders Mac Lane “Catogories for the Working Mathematician”
Springer-Verlag 2010 ISBN 978-1-4419-3123-8

Steve Awodey “Category Theory”
ftp://sumin.in.ua/Books/DVD-021/Awodey_S._Category_Theory(en)(305s).pdf

“Introduction to Category Theory”
www.youtube.com/watch?v=eu0rj5C2Otg

Luca Cardelli and Peter Wegner “On understanding types, data abstraction and polymor-
phism” Computing Surveys, Vol 17 no 4 pp471-522 Dec. 1985
lucacardelli.name/Papers/OnUnderstanding.A4.pdf

A. J. H. Simons, “Adding Axioms to Cardelli-Wegner Subtyping” 1994
staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/addaxiom.pdf

Dana Scott “Data Types as Lattices”
www.cs.ox.ac.uk/files/3287/PRG05.pdf

Roland Backhouse and Marcel Bijsterveld “Category Theory as Coherently Constructive
Lattice Theory” November 1994

1.3 Terms to Understand

Suppose we wish to join Complex with Polynomial(Integer). What would elements of this
combination look like?

The union of the two is a co-product of topological spaces.

The simple combination is not simply adding elements since

i+ x2

is not a valid combination.

We need the algebraic co-product, known as the tensor product. We end up with a domain
of Complex(Polynomial(Integer)).

-> a:Complex(POLY(INT)):=%i+3*x

3x + %i

Type: Complex(Polynomial(Integer))

-> a::POLY(COMPLEX(INT))
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3x + %i

Type: Polynomial(Complex(Integer))

1.4 Category Definition

A category has four parts. We need a set of objects, usually represented as dots. We need
a set of arrows (maps, morphisms), from dot to dot. We need a way to compose arrows in
an associative manner. We need an identity arrow from a dot to itself.

The set of all arrows from dot A to dot B is written as Homc(A,B) or, sometimes C(A,B).
Notice that the set C(A,B) is disjoint from C(A,D) since each arrow has a unique domain
and co-domain.

For the example of the category Set, the objects are sets and the arrows are functions between
sets. For the category Ring, the objects are rings and the arrows are ring homomorphisms.
Similarly for the category Group, the dots are groups and the arrows are group homomor-
phisms. For a fixed Ring R, the category R-Mod has dots which are left R-modules and the
arrows are R-module homomorphisms. We can also look at the category Mod-R which has
dots of right R-modules and arrows which are R-module homomorphisms. For the category
K, if K is a field, the dots are K-vector spaces and the arrows are K-linear transformations.

In Axiom the dots are Types (such as Integer or Character) and the arrows are functions
between them with signature:

f : Integer -> Character

Relations between categories is called a functor. A functor F takes things in category C
into things in category D. We need a function on objects which maps objects of C to objects
of D. We need a function on arrows which take arrows of C to arrows of D.

The categories C and D well defined structure. They have a domain and co-domain of
arrows. They have identity arrows. There is a rule of composition of arrows. These form
commutative diagrams.

First we have to make sure the functor F maintains the domain and co-domain structure
of C. When we apply functor F to C we need to preserve all of the structure so F has to
be defined on all of these properties. If we look at two dots in category C and a function f
which is an arrow in C

f

A ----> B

then the functor F has to operate on everything so we get:

Ff

FA ----> FB

This means that if dom is the domain function in C then the functor F commutes with dom.
That is, applying F (dom(f)) = dom(F (f)).
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Next we have to make sure the functor F maintains the identity arrow of C. From the above
we know that F (identity(x)) = identity(F (x)).

Finally we have to make sure that the rule for composition of arrows in C is preserved. So the
functor F has to make sure that what composes in C also composes with the same diagram
in D.

Some standard functors are the identity functor 1c which just maps C to C. We can form a
functor which forgets properties so that the category Group could map to its underlying set.
We can lift a category by forgetting properties, for example, lifting the category of Abelian
Group C to Group D by “forgetting” the commutative property of C. Similarly the category
Ring or the category Module can be mapped to the underlying Abelian Group. There is
also the Constant functor which maps all of the dots in C to a single dot in D and all of the
arrows in C to the identity arrow in D.

The category CommutativeRing R can be mapped to a Group with the functor GLn which
is the group of invertible NxN matrices with entries in the CommutativeRing R.

1.5 Monoids and Groups

Given a single element set and a set of arrows from that element to itself we know from the
associative property that (fg)h = f(gh) and from the identity property that ef = f = fe.

A 1-object category is a monoid. A 1-object category where all of the arrows are invertible
is a group.

If we restrict the category so there is at most one arrow between any two objects in the set
then we have an ordered set.

A functor F from category C to category D consists of

• object function takes objects of C to objects of D

• arrow function takes arrows of C to arrows of D

Structurally we have 3 things to preserve.

• domains and co-domains of arrows. In order to preserve structure the functor F has to
commute with the domain and co-domain functions. That is, F (dom(f)) = dom(F (f))
and F (co− dom(f)) = co− dom(F (f)).

• identity arrows. The functor F must preserve identity so F (id(x)) = id(F (x)).

• composition properties of arrows. The functor F must take commuting diagrams to
commuting diagrams.



Chapter 2

Axiom Implementation Details

2.1 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In
particular, the Makefile for this book is part of the source of the book and is included below.

5
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Chapter 3

Writing Spad Code

3.1 The Description: label and the )describe command

The describe command will print out the comments associated with Axiom source code ele-
ments. For the category, domain, and package sections the text is taken from the Description:
keyword.

This information is stored in a database and can be queried with

)lisp (getdatabase ’|Integer| ’documentation)

for the Integer domain. However, this information has other uses in the system so it contains
tags and control information. Most tags are removed by the describe function since the
output is intended to be displayed in ASCII on the terminal.

The Description: keyword is in the comment block just after the abbreviation command. It
is freeform and the paragraph will be reflowed automatically to allow for about 60 characters
per line, adjusted for spaces. The Description: section should be written after the keyword
in the “++” comments as in:

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This package does some interesting stuff. We can write multiple

++ lines but they should all line up with the first character of

++ the Description keyword. Special \spad{terms} will be removed.

++

++ The above line will force a newline. So will ending a line with \br

++ \tab{5}This will allow primitive formatting\br

++ \tab{5}So you can align text\br

++ \tab{10}Start in column 11\tab{5}and skip 5 spaces\br

++ \tab{10}End in column 11\tab{7}and count out the needed spaces\br

++ \tab{5} note that the last line will not need the br command

7
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As the comment says, the Description should all be aligned under the “D” in Description.
You can indent using \tab{n} which will insert n spaces. You can force a newline in two
ways. Either include a blank line (with the “++” comments) or use the \br keyword.

Due to lousy parsing algorithms for comments there are various ways this can all go wrong.

There should not be any macros between the Description: section and the beginning of the
definition. This is wrong. It will cause the

)describe package d03AgentsPackage

to give the wrong output because it does not find the end of the description section properly.

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This description does not work

LEDF ==> List Expression DoubleFloat

d03AgentsPackage(): E == I where

In the Description: section the \tab{nn} function will be transformed into nn spaces. If you
end each line with a \br you can control alignment.

++ Description:

++ This is an example of a table alignment\br

++ \tab{5}First Item\tab{5} This will line up with the following line\br

++ \tab{5}Second Item\tab{4} This will line up with the following line\br

++ \tab{5}Third Item\tab{5} This will line up with the following line

If the main body of the category, domain, or package begins with properties rather than
functions the Description will be incorrectly recorded. This is a known bug finding the end
of the Description section. For instance, this

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

NullSquare

++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

will give the output
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{JacobiIdentity} means that} [x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0 holds.

but reordering it to read:

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

NullSquare

++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

will give the output

The category of Lie Algebras. It is used by the domains of

non-commutative algebra, LiePolynomial and XPBWPolynomial.

which is correct.

— * —

PROJECT=bookvol2

TANGLE=/usr/local/bin/NOTANGLE

WEAVE=/usr/local/bin/NOWEAVE

LATEX=/usr/bin/latex

MAKEINDEX=/usr/bin/makeindex

all:

${WEAVE} -t8 -delay ${PROJECT}.pamphlet >${PROJECT}.tex

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

${MAKEINDEX} ${PROJECT}.idx

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

———-
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